上海申弘閥門有限公司
聯系人:申弘閥門
手機:15901754341
傳真:86-021-31662735
郵箱:494522509@qq.com
地址:上海市青浦區金澤工業園區
正確選擇化工調節閥
上海申弘閥門有限公司
之前介紹電動閘閥工作原理,現在介紹正確選擇化工調節閥在生產過程自動化中,用來控制流體流量的調節閥已遍及各個行業。在化工行業的過程控制系統中,作為zui終控制過程介質各項質量及安全生產指標的調節閥,在穩定生產、優化控制、維護及檢修成本控制等方面都起著舉足輕重的作用。下文將就調節閥在應用中須注意的幾個問題,談一些自己的拙見,以期與大家共同探討。
正確選擇化工調節閥調節閥是通過改變節流方式來控制流量的,它既是一種有效的調節手段,同時又是一個會產生節流能耗的部件。隨著裝置高負荷運行,調節閥的腐蝕、沖刷、磨損、振動、內漏等問題不斷發生,從而導致調節閥的使用壽命縮短、工作可靠性下降、進而引起工藝系統和裝置的生產效率大幅度下降,嚴重時可以導致全線停車。這在視質量和效益為生命的企業管理中尤為重要和緊迫。因此,如何選擇和安裝好調節閥,使調節閥在一個高性能狀態下運行將是一個很關鍵的問題。
選擇調節閥時,首先要收集完整的工藝流體的物理特性參數與調節閥的工作條件,主要有流體的成份、溫度、密度、粘度、正常流量、zui大流量、zui小流量、zui大流量與zui小流量下的進出口壓力、zui大切斷壓差等。在對調節閥具體選型確定前,還必須充分掌握和確定調節閥本身的結構、形式、材料等方面的特點,而技術方面需要重點考慮流量特性、壓降、閃蒸、氣蝕、噪聲等問題。
一、流量特性的選擇
調節閥的流量特性是指介質流過閥的相對流量與相對位移間的關系。選擇的總體原則是調節閥的流量特性應與調節對象特性及調節器特性相反,這樣可使調節系統的綜合特性接近于線性。選擇通常在工藝系統要求下進行,但是還要考慮很多實際情況,現分別加以說明。
1、直線性流量調節閥
直線性流量特性是指調節閥的相對流量與相對位移成直線關系,即單位位移變化所引起的流量變化是常數。選用直線性流量特性閥的場合一般為:①差壓變化小,幾乎恒定;②工藝系統主要參數的變化呈線性;③系統壓力損失大部分分配在調節閥上(改變開度,閥上差壓變化相對較小);④外部干擾小,給定值變化小,可調范圍要求小的場合。
2、等百分比特性調節閥
等百分比流量特性也稱對數流量特性。它是指單位相對位移變化所引起的相對流量變化與此點的相對流量成正比關系。即調節閥的放大系數是變化的,它隨相對流量的增大而增大。優先選用等百分比特性閥的場合為:①實際可調范圍大;②開度變化,閥上差壓變化相對較大;③管道系統壓力損失大;④工藝系統負荷大幅度波動;⑤調節閥經常在小開度下運行。
除了以上兩種常用的流量特性之外,還有拋物線特性和快開特性等其他流量特性的調節閥。在密封結構上,若流量特性精度要求高,則可選用高精度流量特性的金屬密封型,而軟密封型精度較低。
3、調節閥壓降的系統考慮
調節閥作為過程控制系統中的終端部件,是zui常用的一種執行器。按過程控制系統的要求,調節閥應具有在低能量消耗的狀態下工作,且能充分與系統匹配的工作特性。但是在調節閥的使用中這兩個要求是不能同時滿足的,甚至是互相矛盾的。在要得到同樣的流量的情況下,選擇一只較小口徑的調節閥,雖然其他阻力不變而總的阻力必然比較大,形成大的系統總壓降。假若物流的推動力是由泵產生,就意味著必須選功率大一些的泵和電機,這樣必然帶來大的能耗。
當管道系統中介質的流速增加時,流體通過管道上的各種安裝部件時產生的流體壓降也會發生一系列的動態變化,作為管道流體控制主要部件的調節閥所引起的流體壓降是一個很重要而又容易被忽略的因素,我們在分析與調節閥有關的系統問題時,不僅要考慮到調節閥本身的問題,而且也要考慮到調節閥的壓降對系統動態平衡的影響。
4、調節閥的閃蒸和氣蝕
在調節閥內流動的液體常常出現閃蒸和氣蝕兩種現象。它們的發生不但影響口徑的選擇和計算,而且將導致嚴重的噪聲、振動、材質的破壞等。在這種情況下,調節閥的工作壽命會大大縮短,對此在選型使用中要尤其重視。
正常情況下,作為液體狀態的介質,流入、流經、流出調節閥時均保持液態。閃蒸作為液體狀態的介質,流入調節閥時是液態,在流經調節閥中的縮流處時,流體的壓力低于氣化壓力,液態介質變成氣態介質,并且它的壓力不會再回復到氣化壓力之上,流出調節閥時介質一直保持氣態。
閃蒸就象一種噴沙現象,它作用在閥體和管線的下游部分,給調節閥和管道的內表面造成嚴重的沖蝕,同時也降低了調節閥的流通能力。氣蝕作為液體狀態的介質,流入調節閥時是液態,在流經調節閥中的縮流處時流體的壓力低于氣化壓力,液態介質變成氣態介質,隨后它的壓力又回復到氣化壓力之上,zui后在流出調節閥前介質又變成液態。可以根據一些現象來初步判斷氣蝕的存在,當氣蝕開始時它會發出一種嘶嘶聲,當氣蝕發展到*穩定時,調節閥中會發出嘎嘎的聲音,就像有碎石在流過調節閥時發出的聲響。氣蝕對調節閥及內件的損害也是很大的,同時它也降低了調節閥的流通效能,就像閃蒸一樣。因此,我們必須采取有效的措施來防止或者zui大限度地減小閃蒸或氣蝕的發生:
(1)盡量將調節閥安裝在系統的zui低位置處,這樣可以相對提高調節閥入口和出口的壓力;
(2)在調節閥的上游或下游安裝一個截止閥或者節流孔板,以改變調節閥原有的安裝壓降特性(這種方法一般對于小流量情況比較有效);
(3)選用專門的反氣蝕內件也可以有效地防止閃蒸或氣蝕,它可以改變流體在調節閥內的流速變化,從而增加了內部壓力;
(4)盡量選用材質較硬的調節閥。因為在發生氣蝕時,對于這樣的調節閥,它有一定的抗沖蝕性和耐磨性,可以在一定的條件下讓氣蝕存在,并且不會損壞調節閥的內件。相反,對于軟性材質的調節閥,由于它的抗沖蝕性和耐磨性較差,當發生氣蝕時,調節閥的內部構件很快就會被磨損,因而無法在有氣蝕的情況下正常工作。
總之,目前還沒有什么工程材料能夠適應嚴重條件下的氣蝕情況,只能針對客觀情況來綜合分析,選擇一種相對比較合理的解決辦法。
1、 自力式壓力調節閥閥后壓力控制工作原理,工作介質的閥前壓力P1經過閥芯、閥座的節流后,變為閥后壓力P2。P2經過控制管線到達執行器的下膜室內作用在頂盤上,產生的作用力與彈簧的反作用力相平衡,決定了閥芯、閥座的相對位置,控制閥后壓力。當閥后壓力P2增加時,P2作用在頂盤上的作用力也隨之增加。此時,頂盤的作用力大于彈簧的反作用力,使閥芯關向閥座的位置,直到頂盤的作用力與彈簧的反作用力相平衡為止。這時,閥芯與閥座的流通面積減少,流阻變大,從而使P2降為設定值。同理,當閥后壓力P2降低時,作用方向與上述相反,這就是自力式(閥后)壓力調節閥的工作原理。
2、 自力式壓力調節閥閥前壓力控制工作原理,工作介質的閥前壓力P1經過閥芯、閥座后的節流后,變為閥后壓力P2。同時P1經過控制管線輸入到執行器的上膜室內作用在頂盤上,產生的作用力與彈簧的反作用力相平衡,決定了閥芯、閥座的相對位置,控制閥前壓力。當閥后壓力P1增加時,P1作用在頂盤上的作用力也隨之增加。此時,頂盤的作用力大于彈簧的反作用力,使閥芯向離開閥座的方向移動,直到頂盤的作用力與彈簧的反作用力相平衡為止。這時,閥芯與閥座的流通面積減大,流阻變小,從而使P1降為設定值。同理,當閥后壓力P1降低時,作用方向與上述相反,這就是自力式(閥前)壓力調節閥的工作原理。
氣動調節閥工作原理
氣動調節閥就是利用壓縮空氣為動力源,把氣缸當做執行器,并借助于電氣閥門定位器、轉換器、電磁閥、保位閥等附件去驅動閥門,實現開關流量的調節,接收工業自動化控制系統的控制信號來完成調節管道介質的流量、壓力、溫度等各種工藝參數。氣動調節閥的特點就是控制簡單,反應快速,且本質安全,不需另外再采取防爆措施。
氣動調節閥動作分氣開型和氣關型氣動調節閥動作分氣開型和氣關型兩種。氣開型(Air to Open) 是當膜頭上空氣壓力增加時,閥門向增加開度方向動作,當達到輸入氣壓上*,閥門處于全開狀態。反過來,當空氣壓力減小時,閥門向關閉方向動作,在沒有輸入空氣時,閥門全閉。故有時氣開型閥門又稱故障關閉型(Fail to Close FC)。氣關型(Air to Close)動作方向正好與氣開型相反。當空氣壓力增加時,閥門向關閉方向動作;空氣壓力減小或沒有時,閥門向開啟方向或全開為止。故有時又稱為故障開啟型(Fail to Open FO)。
電動調節閥工作原理
上海申弘閥門有限公司主營閥門有:截止閥,電動截止閥,氣動截止閥,電動蝶閥,氣動蝶閥上海申弘閥門電動調節閥,電動調節閥出現時間略微比氣動調節閥來的要晚些,但是其使用范圍卻越來越廣泛。因為不需要氣源,安裝使用比較方便,只需接通電源和控制信號就可以工作了。
電動調節閥由電動執行器和調節閥兩部分組成。電動執行器有直行程和角行程兩種,分別與直行程調節閥和角行程調節閥組合,例如:單座調節閥,雙座調節閥,套筒調節閥等是直行程調節閥。V型球閥,蝶閥,偏心旋轉閥等是角行程調節閥。只有相應種類的電動執行器和調節閥才能組成一套電動調節閥。
電動執行器一般由永磁同步電機,蝸輪蝸桿減速器或行星齒輪減速器,反饋電位器和控制線路,控制器,輸出軸,支架所組成。電機作為動力源,其大小決定了輸出力和扭矩的大小。減速器保證了動作速度。反饋電位器和控制線路可以接受PLC工業計算機輸出的控制信號4-20MA或1-5V來控制電動執行器比例動作,并有反饋信號輸出給控制系統,當達到控制平衡時執行器保持不動狀態。現在控制線路一般都集成一個控制器內,由環氧樹脂灌裝,防潮防震,可靠性高。支架是用來連接調節閥,一端連接電動執行器,一端連接調節閥。輸出軸與調節閥的閥桿相連接,使執行器的輸出力或扭矩傳遞到調節閥,帶動調節閥完成比例控制動作。
在電動調節閥出行信號故障時可以使用手操器來進行遠程手動控制,其可以自動切換自動和手動操作,非常方便。當電源出行故障時就只能現場手動來調節其行程,完成調節過程。電動執行器一般都帶有手動操作部分,這點和氣動調節閥有著不同,后者一般手輪機構都是選配的。
5、調節閥的噪聲分析
氣蝕和噪聲是調節閥在控制高壓差流體中的兩大公害。調節閥上的噪聲更是石油化工生產中的主要污染源。在使用中除需選用低噪聲結構的調節閥外,改變閥的操作條件更是消除或降低氣蝕和噪聲的根本方法。調節閥在工作時,應注意它的噪聲情況,分析好噪聲的產生機理可以更好地監視調節閥的工作狀態和有效處理所發生的問題,下面通過舉例說明。
(1)機械類振動——如當閥芯在套筒內水平運動時,可以使閥芯與套筒的間隙盡量小或者使用硬質表面的套筒。
(2)固有頻率振動——如閥芯或者其它的組件,它們都有一個固有振動頻率,對此,可以通過專門的鑄造或鍛造處理來改變閥芯的特性,如有必要也可以更換其他類型的閥芯。
(3)閥芯不穩定性——如由于閥芯振蕩性位移引起流體的壓力波動所產生的噪聲,這種情況一般是由于調節回路執行器等的阻尼因素引起的,對此可以重新調節阻尼系數或者在閥芯位移方向上加上減振設施。
(4)介質的力學流動性——介質在管道或者調節閥中流動時,也會發出噪聲,對于這種情況,這里不作具體闡述(氣蝕也會產生噪聲)。
二、結語
調節閥的選型和應用是一個專業性強、涉及技術領域廣的系統工作,我們不僅要在理論上充分了解它的各種特性,而且要結合實際使用經驗來綜合分析判斷,做到理論和實踐科學地結合起來,才可以做好這個工作。與本文相關的產品有:加長桿蝶閥安裝注意事項
下一篇:自力高壓調節閥在化工涂料應用